

COURSE CODE	COURSE NAME	L	Т	Р	CREDIT	YEAR OF INTRODUCTION
101009/ MA100B	INTRODUCTORY TOPICS IN STATISTICS, PROBABILITY AND CALCULUS	3	0	0	3	2021

- **1. Preamble:** This course introduces to some basic mathematical ideas and tools about probability distributions and statistical methods of analyzing data. A brief course in statistics familiarizes students about the various applications.
- 2. **Prerequisite:** Basic study of probability and Statistics in school class. Basic calculus.

3. Syllabus:

Module 1:

Introduction to Statistics: Definition of Statistics. Basic objectives. Applications in various branches of science with examples. Collection of Data: Internal and external data, Primary and secondary Data. Population and sample, Representative sample.

Module 2:

Descriptive Statistics: Classification and tabulation of univariate data, graphical representation, Frequency curves. Descriptive measures - central tendency and dispersion. Bivariate data. Summarization, marginal and conditional frequency distribution.

Module 3:

Probability: Concept of experiments, sample space, event. Definition of Combinatorial Probability. Conditional Probability, Bayes Theorem.

Module 4:

Probability distributions: discrete& continuous distributions, Binomial, Poisson and Geometric distributions, Uniform, Exponential, Normal, Chi-square, t, F distributions. Expected values and moments: mathematical expectation and its properties, Moments (including variance) and their properties, interpretation, Moment generating function.

Module 5:

Calculus: Basic concepts of Differential and integral calculus, application of double and triple integral.

4. Text Books:

- 1. S.M. Ross, Introduction of Probability Models, Academic Press, N.Y.
- 2. A. Goon, M. Gupta and B. Dasgupta, *Fundamentals of Statistics, vol. I & II*, , World Press.
- 3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication, Delhi.

5. Reference Books

- 1. S.M. Ross, A first course in Probability, Prentice Hall.
- 2. I.R. Miller, J.E. Freund and R. Johnson, *Probability and Statistics for Engineers*, (Fourth Edition), PHI.
- 3. A.M. Mood, F.A. Graybill and D.C. Boes, *Introduction to the Theory of Statistics*, McGraw Hill Education.
- 4. Peter V. O'Neil, *Advanced Engineering Mathematics*, (Seventh Edition), Thomson Learning.
- 5. M. D. Greenberg, *Advanced Engineering Mathematics*, (Second Edition), Pearson Education.
- 6. P. N. Wartikar and J. N. Wartikar, *Applied Mathematics, Vol. I & II*, Vidyarthi Prakashan.

6. Course Outcomes:

After the completion of the course the student will be able to

- CO 1: Know the methods of collecting data and samples
- CO 2: Understand about central tendency and dispersion
- CO 3: Understand probability and Baye's theorem
- CO 4: Know the probability distributions
- CO 5: understand the basics of differentiation and integration

7. Mapping of Course Outcomes with Program Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	3	2	1				2		2
CO 2	3	3	3	3	2	1				2		2

CO 3	3	3	3	3	2	1		2	2
CO 4	3	3	3	3	2	1		2	2
CO 5	3	3	3	3	2	1		2	2

8. Assessment Pattern:

Bloom's	Continuous Asse	essment Tests	End Semester Examination		
Category	Test 1 (25 Marks)	Test 2 (25 Marks)	Marks		
Remember	10	10	10		
Understand	30	30	30		
Apply	30	30	30		
Analyse	20	20	20		
Evaluate	10	10	10		
Create					

9. Mark Distribution:

Total	otal CIE						
	Attendance	Internal	Assignment /	Total			
		Examination	Quiz / Course				
			Project				
150	10	25 (Average	15	50	100		
		of 2 scores)					

10. End Semester Examination Pattern:

There will be 2 parts – Part A and Part B.

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which students should answer any one. Each question can have maximum 2 sub divisions and carry 14 marks.