COURSE CODE	COURSE NAME	T	P	CREDIT	YEAR OF INTRODUCTION	
101009/ MA100B	INTRODUCTORY TOPICS IN STATISTICS, PROBABILITY AND CALCULUS	$\mathbf{3}$	0	0	3	2021

1. Preamble: This course introduces to some basic mathematical ideas and tools about probability distributions and statistical methods of analyzing data. A brief course in statistics familiarizes students about the various applications.
2. Prerequisite: Basic study of probability and Statistics in school class. Basic calculus.

3. Syllabus:

Module 1:

Introduction to Statistics: Definition of Statistics. Basic objectives. Applications in various branches of science with examples. Collection of Data: Internal and external data, Primary and secondary Data. Population and sample, Representative sample.

Module 2:

Descriptive Statistics: Classification and tabulation of univariate data, graphical representation, Frequency curves. Descriptive measures - central tendency and dispersion. Bivariate data. Summarization, marginal and conditional frequency distribution.

Module 3:

Probability: Concept of experiments, sample space, event. Definition of Combinatorial Probability. Conditional Probability, Bayes Theorem.

Module 4:

Probability distributions: discrete\& continuous distributions, Binomial, Poisson and Geometric distributions, Uniform, Exponential, Normal, Chi-square, t, F distributions. Expected values and moments: mathematical expectation and its properties, Moments (including variance) and their properties, interpretation, Moment generating function.

Module 5:

Calculus: Basic concepts of Differential and integral calculus, application of double and triple integral.

4. Text Books:

1. S.M. Ross, Introduction of Probability Models, Academic Press, N.Y.
2. A. Goon, M. Gupta and B. Dasgupta, Fundamentals of Statistics, vol. I \& II, , World Press.
3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication, Delhi.

5. Reference Books

1. S.M. Ross, A first course in Probability,Prentice Hall.
2. I.R. Miller, J.E. Freund and R. Johnson, Probability and Statistics for Engineers, (Fourth Edition), PHI.
3. A.M. Mood, F.A. Graybill and D.C. Boes, Introduction to the Theory of Statistics, McGraw Hill Education.
4. Peter V. O'Neil, Advanced Engineering Mathematics, (Seventh Edition), Thomson Learning.
5. M. D. Greenberg, Advanced Engineering Mathematics, (Second Edition), Pearson Education.
6. P. N. Wartikar andJ. N. Wartikar, Applied Mathematics, Vol. I \& II,Vidyarthi Prakashan.

6. Course Outcomes:

After the completion of the course the student will be able to
CO 1: Know the methods of collecting data and samples
CO 2: Understand about central tendency and dispersion
CO 3: Understand probability and Baye's theorem
CO 4: Know the probability distributions
CO 5: understand the basics of differentiation and integration

7. Mapping of Course Outcomes with Program Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	3	2					2		2
CO 2	3	3	3	3	2	1				2		2

CO 3	3	3	3	3	2	1				2		2
CO 4	3	3	3	3	2	1				2		2
CO 5	3	3	3	3	2	1				2		2

8. Assessment Pattern:

Bloom's Category	Continuous Assessment Tests		End Semester Examination Marks
	Test 1 (25 Marks)	Test 2 (25 Marks)	
Remember	10	10	30
Understand	30	30	30
Apply	30	30	20
Analyse	20	20	10
Evaluate	10	10	
Create			

9. Mark Distribution:

Total	CIE				ESE
	Attendance	Internal Examination	Assignment / Total Quiz / Course Project		
150	10	25 (Average of 2 scores)	15	50	100

10. End Semester Examination Pattern:

There will be 2 parts - Part A and Part B.
Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which students should answer any one. Each question can have maximum 2 sub divisions and carry 14 marks.

